turtlebot入门教程-多个目标点自主导航

 znjrobot   2019-01-21 10:33   50 人阅读  0 条评论

turtlebot入门教程-多个目标点自主导航

说明:

步骤:

  • 生成multinav包:

cd ~/catkin_ws/src
catkin_create_pkg multinav std_msgs rospy roscpp
  • 增加导航文件

cd ~/catkin_ws/src/multinav/src
touch nav.py
vim nav.py
  • 代码如下:

#!/usr/bin/env python  
import rospy  
import actionlib  
from actionlib_msgs.msg import *  
from geometry_msgs.msg import Pose, PoseWithCovarianceStamped, Point, Quaternion, Twist  
from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal  
from random import sample  
from math import pow, sqrt  
  
class MultiNav():  
    def __init__(self):  
        rospy.init_node('MultiNav', anonymous=True)  
        rospy.on_shutdown(self.shutdown)  
  
        # How long in seconds should the robot pause at each location?  
        self.rest_time = rospy.get_param("~rest_time", 10)  
  
        # Are we running in the fake simulator?  
        self.fake_test = rospy.get_param("~fake_test", False)  
  
        # Goal state return values  
        goal_states = ['PENDING', 'ACTIVE', 'PREEMPTED','SUCCEEDED',  
                       'ABORTED', 'REJECTED','PREEMPTING', 'RECALLING',   
                       'RECALLED','LOST']  
  
        # Set up the goal locations. Poses are defined in the map frame.  
        # An easy way to find the pose coordinates is to point-and-click  
        # Nav Goals in RViz when running in the simulator.  
        # Pose coordinates are then displayed in the terminal  
        # that was used to launch RViz.  
        locations = dict()  
        
        # 替代为自己的地图上对应的位置,朝向默认为1

        locations['home_kitchen'] = Pose(Point(-1.03, 7.28, 0.00), Quaternion(0.000, 0.000, 0.000, 1.000))  
        locations['home_hall'] = Pose(Point(-1.40, 4.30, 0.00), Quaternion(0.000, 0.000, 0.000, 1.000))  
        locations['home_sofa'] = Pose(Point(-2.56, 2.82, 0.00), Quaternion(0.000, 0.000, 0.000, 1.000))  
        locations['home_refrigerator'] = Pose(Point(-1.00, 6.88, 0.00), Quaternion(0.000, 0.000, 1.000, 0.000)) 
        locations['home_door'] = Pose(Point(-2.80, 8.00, 0.00), Quaternion(0.000, 0.000, 0.000, 1.000))
        locations['home_balcony'] = Pose(Point(-2.08, 4.57, 0.00), Quaternion(0.000, 0.000, 0.000, 1.000)) 

 
        # Publisher to manually control the robot (e.g. to stop it)  
        self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=5)  
  
        # Subscribe to the move_base action server  
        self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction)  
        rospy.loginfo("Waiting for move_base action server...")  
  
        # Wait 60 seconds for the action server to become available  
        self.move_base.wait_for_server(rospy.Duration(60))  
        rospy.loginfo("Connected to move base server")  
          
        # A variable to hold the initial pose of the robot to be set by the user in RViz  
        initial_pose = PoseWithCovarianceStamped()  
        # Variables to keep track of success rate, running time, and distance traveled  
        n_locations = len(locations)  
        n_goals = 0  
        n_successes = 0  
        i = n_locations  
        distance_traveled = 0  
        start_time = rospy.Time.now()  
        running_time = 0  
        location = ""  
        last_location = ""  
        # Get the initial pose from the user  
        rospy.loginfo("Click on the map in RViz to set the intial pose...")  
        rospy.wait_for_message('initialpose', PoseWithCovarianceStamped)  
        self.last_location = Pose()  
        rospy.Subscriber('initialpose', PoseWithCovarianceStamped, self.update_initial_pose)  
        # Make sure we have the initial pose  
        while initial_pose.header.stamp == "":  
            rospy.sleep(1)  
        rospy.loginfo("Starting navigation test")  
  
        # Begin the main loop and run through a sequence of locations  
        while not rospy.is_shutdown():  
  
        # If we've gone through the current sequence, start with a new random sequence  
            if i == n_locations:  
                i = 0  
                sequence = sample(locations, n_locations)  
                # Skip over first location if it is the same as the last location  
                if sequence[0] == last_location:  
                    i = 1  
  
            # Get the next location in the current sequence  
            location = sequence[i]  
  
            # Keep track of the distance traveled.  
            # Use updated initial pose if available.  
            if initial_pose.header.stamp == "":  
                distance = sqrt(pow(locations[location].position.x  
                           - locations[last_location].position.x, 2) +  
                           pow(locations[location].position.y -  
                           locations[last_location].position.y, 2))  
            else:  
                rospy.loginfo("Updating current pose.")  
                distance = sqrt(pow(locations[location].position.x  
                           - initial_pose.pose.pose.position.x, 2) +  
                           pow(locations[location].position.y -  
                           initial_pose.pose.pose.position.y, 2))  
                initial_pose.header.stamp = ""  
  
            # Store the last location for distance calculations  
            last_location = location  
  
            # Increment the counters  
            i += 1  
            n_goals += 1  
  
            # Set up the next goal location  
            self.goal = MoveBaseGoal()  
            self.goal.target_pose.pose = locations[location]  
            self.goal.target_pose.header.frame_id = 'map'  
            self.goal.target_pose.header.stamp = rospy.Time.now()  
  
            # Let the user know where the robot is going next  
            rospy.loginfo("Going to: " + str(location))  
            # Start the robot toward the next location  
            self.move_base.send_goal(self.goal)  
  
            # Allow 5 minutes to get there  
            finished_within_time = self.move_base.wait_for_result(rospy.Duration(300))  
  
            # Check for success or failure  
            if not finished_within_time:  
                self.move_base.cancel_goal()  
                rospy.loginfo("Timed out achieving goal")  
            else:  
                state = self.move_base.get_state()  
                if state == GoalStatus.SUCCEEDED:  
                    rospy.loginfo("Goal succeeded!")  
                    n_successes += 1  
                    distance_traveled += distance  
                else:  
                    rospy.loginfo("Goal failed with error code: " + str(goal_states[state]))  
  
            # How long have we been running?  
            running_time = rospy.Time.now() - start_time  
            running_time = running_time.secs / 60.0  
  
            # Print a summary success/failure, distance traveled and time elapsed  
            rospy.loginfo("Success so far: " + str(n_successes) + "/" +  
                          str(n_goals) + " = " + str(100 * n_successes/n_goals) + "%")  
            rospy.loginfo("Running time: " + str(trunc(running_time, 1)) +  
                          " min Distance: " + str(trunc(distance_traveled, 1)) + " m")  
            rospy.sleep(self.rest_time)  
  
    def update_initial_pose(self, initial_pose):  
        self.initial_pose = initial_pose  
  
    def shutdown(self):  
        rospy.loginfo("Stopping the robot...")  
        self.move_base.cancel_goal()  
        rospy.sleep(2)  
        self.cmd_vel_pub.publish(Twist())  
        rospy.sleep(1)  
def trunc(f, n):  
  
    # Truncates/pads a float f to n decimal places without rounding  
    slen = len('%.*f' % (n, f))  
    return float(str(f)[:slen])  
  
if __name__ == '__main__':  
    try:  
        MultiNav()  
        rospy.spin()  
    except rospy.ROSInterruptException:  
        rospy.loginfo("AMCL navigation test finished.")

制作地图:

  • 例如:制作地图保存为/home/nc/map/home.yaml

  • 创建地图后,标记目标点位置和朝向

    • 点击RVIZ工具栏的上的Publish point,鼠标移动到地图上的任意,查看左下角的坐标点:x,y,z 。

    • 选择多组需要的坐标点,记录下来作为之后需要导航的地点。

    • 朝向方便起见,都设置为1

  • 制作导航字典:

    • 位置:Point(x, y, z)分别是上面记录的数组,z默认都为0.00

    • 朝向:Quaternion(0.000, 0.000, 0.000, 1.000),默认都为1,可以自己设定。

  • 字典格式:

locations['home_kitchen'] = Pose(Point(x, y, z), Quaternion(0.000, 0.000, 0.000, 1.000))
  • 字典示例:

locations['home_kitchen'] = Pose(Point(-1.03, 7.28, 0.00), Quaternion(0.000, 0.000, 0.000, 1.000))  
locations['home_hall'] = Pose(Point(-1.40, 4.30, 0.00), Quaternion(0.000, 0.000, 0.000, 1.000))  
locations['home_sofa'] = Pose(Point(-2.56, 2.82, 0.00), Quaternion(0.000, 0.000, 0.000, 1.000))  
locations['home_refrigerator'] = Pose(Point(-1.00, 6.88, 0.00), Quaternion(0.000, 0.000, 1.000, 0.000)) 
locations['home_balcony'] = Pose(Point(-2.08, 4.57, 0.00), Quaternion(0.000, 0.000, 0.000, 1.000))
  • 更新到代码nav.py中,标识要替换的部分。

运行测试:

  • 在turtlebot打开新终端,启动turtlebot。

roslaunch turtlebot_bringup minimal.launch
  • 在turtlebot打开新终端,运行导航程序并加载地图。

roslaunch turtlebot_navigation amcl_demo.launch map_file:=/home/nc/map/home.yaml
  • 在工作站打开新终端,实时监测。

roslaunch turtlebot_rviz_launchers view_navigation.launch
  • 在turtlebot打开新终端,执行导航。

rosrun multinav nav.py
  • 程序监听初始位姿,在rviz中通过2d pose estimate设定初始位姿。

  • 成功设置后,程序就会按照设定的目标点逐一导航。

扩展:

  • 目标点保存和读取:

    • 写入文件,通过文件读取

    • 写入数据库,通过数据库读取

  • 准实时:

    • 指定某个目标点,让机器人立即导航

    • 思路:通过web实现读取和写入目标点到数据库指定的临时表,此表保存目标点数据,循环查询,有数据,即读取并执行导航。

参考:

  • 《ros by examples》例程

  • http://blog.csdn.net/a472725641/article/details/53537806

  • https://segmentfault.com/a/1190000006262518


本文地址:http://www.rosrobot.cn/?id=201
版权声明:本文为原创文章,版权归 znjrobot 所有,欢迎分享本文,转载请保留出处!

发表评论


表情

还没有留言,还不快点抢沙发?